Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cosmic-ray physics in the GeV-to-TeV energy range has entered a precision era thanks to recent data from space-based experiments. However, the poor knowledge of nuclear reactions, in particular for the production of antimatter and secondary nuclei, limits the information that can be extracted from these data, such as source properties, transport in the Galaxy and indirect searches for particle dark matter. The Cross-Section for Cosmic Rays at CERN workshop series has addressed the challenges encountered in the interpretation of high-precision cosmic-ray data, with the goal of strengthening emergent synergies and taking advantage of the complementarity and know-how in different communities, from theoretical and experimental astroparticle physics to high-energy and nuclear physics. In this paper, we present the outcomes of the third edition of the workshop that took place in 2024. We present the current state of cosmic-ray experiments and their perspectives, and provide a detailed road map to close the most urgent gaps in cross-section data, in order to efficiently progress on many open physics cases, which are motivated in the paper. Finally, with the aim of being as exhaustive as possible, this report touches several other fields -- such as cosmogenic studies, space radiation protection and hadrontherapy -- where overlapping and specific new cross-section measurements, as well as nuclear code improvement and benchmarking efforts, are also needed. We also briefly highlight further synergies between astroparticle and high-energy physics on the question of cross-sections.more » « lessFree, publicly-accessible full text available March 20, 2026
-
Exploring dark matter via observations of extreme astrophysical environments -- defined here as heavy compact objects such as white dwarfs, neutron stars, and black holes, as well as supernovae and compact object merger events -- has been a major field of growth since the last Snowmass process. Theoretical work has highlighted the utility of current and near-future observatories to constrain novel dark matter parameter space across the full mass range. This includes gravitational wave instruments and observatories spanning the electromagnetic spectrum, from radio to gamma-rays. While recent searches already provide leading sensitivity to various dark matter models, this work also highlights the need for theoretical astrophysics research to better constrain the properties of these extreme astrophysical systems. The unique potential of these search signatures to probe dark matter adds motivation to proposed next-generation astronomical and gravitational wave instruments. Note: Contribution to Snowmass 2021 -- CF3. Dark Matter: Cosmic Probesmore » « less
-
All ten LIGO/Virgo binary black hole (BH-BH) coalescences reported following the O1/O2 runs have near-zero effective spins. There are only three potential explanations for this. If the BH spin magnitudes are large, then: (i) either both BH spin vectors must be nearly in the orbital plane or (ii) the spin angular momenta of the BHs must be oppositely directed and similar in magnitude. Then there is also the possibility that (iii) the BH spin magnitudes are small. We consider the third hypothesis within the framework of the classical isolated binary evolution scenario of the BH-BH merger formation. We test three models of angular momentum transport in massive stars: a mildly efficient transport by meridional currents (as employed in the Geneva code), an efficient transport by the Tayler-Spruit magnetic dynamo (as implemented in the MESA code), and a very-efficient transport (as proposed by Fuller et al.) to calculate natal BH spins. We allow for binary evolution to increase the BH spins through accretion and account for the potential spin-up of stars through tidal interactions. Additionally, we update the calculations of the stellar-origin BH masses, including revisions to the history of star formation and to the chemical evolution across cosmic time. We find that we can simultaneously match the observed BH-BH merger rate density and BH masses and BH-BH effective spins. Models with efficient angular momentum transport are favored. The updated stellar-mass weighted gas-phase metallicity evolution now used in our models appears to be key for obtaining an improved reproduction of the LIGO/Virgo merger rate estimate. Mass losses during the pair-instability pulsation supernova phase are likely to be overestimated if the merger GW170729 hosts a BH more massive than 50 M ⊙ . We also estimate rates of black hole-neutron star (BH-NS) mergers from recent LIGO/Virgo observations. If, in fact. angular momentum transport in massive stars is efficient, then any (electromagnetic or gravitational wave) observation of a rapidly spinning BH would indicate either a very effective tidal spin up of the progenitor star (homogeneous evolution, high-mass X-ray binary formation through case A mass transfer, or a spin- up of a Wolf-Rayet star in a close binary by a close companion), significant mass accretion by the hole, or a BH formation through the merger of two or more BHs (in a dense stellar cluster).more » « less
An official website of the United States government

Full Text Available